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T H E C O G N I T I V E B I A S C O D E X

Too Much 
Information

Not Enough 
Meaning

Need To 
Act Fast

What Should We 
Remember?

We notice things already primed in 
memory or repeated often

Bizarre, funny, visually striking, or 
anthropomorphic things stick out more 
than non-bizarre/unfunny things

We notice when something has changed

We are drawn to details 
that confirm our own existing beliefs

We notice flaws in others 
more easily than we 
notice flaws in ourselves

Anecdotal fallacy

We tend to find stories and 
patterns even when looking 
at sparse data

We fill in characteristics from 
stereotypes, generalities, 
and prior histories

We imagine things and people 
we're familiar with or fond of 
as better

We simplify probabilities and numbers 
to make them easier to think about

We think we know what 
other people are thinking

Hi
nd

si
gh

t b
ia

s

We project our current mindset and 
assumptions onto the past and future

we must be confident we , To act
can make an impact and feel what we do is important

we favor the , To stay focusedrelatable thing , 
immediate in front of us

we tend , To get things done ve '
to complete things weinvested time and energy in

, To avoid mistakes
we aim to preserve autonomy 

and avoid , 
and group statusirreversible decisions

looking options –We favor simple
and complete information over 

ambiguous options, 
complex

We edit and reinforce 
some memories after the fact

We discard specifics 
to form generalities

We reduce events and lists 
to their key elements

We store memories differently based 
on how they were experienced

Presenter
Presentation Notes
Allison - human biases are manifested in the algorithms/models they make. And in some cases those biases may be exaggerated. 
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Implicit bias Sampling bias Automation bias

Reporting bias In-group bias Coverage bias

Out-group 
homogeneity bias

Non-response 
bias Confirmation bias

Presenter
Presentation Notes
Source: https://developers.google.com/machine-learning/crash-course/fairness/video-lecture
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Neutrality Biases Mechanics of 
AI

Stakeholders Errors Regulations

AI learning 
cycles

Presenter
Presentation Notes
Bekky – so far we found out there is no such thing as Neutral system – human biases exist or are exaggerated when they enter an automated systemAnother example: AI in court system
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Presenter
Presentation Notes
Allison - What would someone want the tasiest? The healthiest? Different stakeholders have different goals for it. Also, would you optimize for looks or cleanness? Who cares if the kitchen is clean afterwards, or if the sandwich looks nice?
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Elahe.https://www.netflix.com/watch/80131566?trackId=14277281&tctx=0%2C1%2C1be289c2-47a2-4f29-961d-42f76b871efc-53475446%2C%2C
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Presenter
Presentation Notes
Bekky - Optimizing for whom? Patient, clinic, doctor, or insurance company?



9

Type I and Type II errors & stakeholders

Presenter
Presentation Notes
Allison introduces activity- we all discuss.
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Presenter
Presentation Notes
Elahe- Algorithmic accountability act: creators vs. operator – assessment of impact



Artificial Intelligence Learning Cycle

11

Artificial Intelligence Learning Cycle (AILC; Antink-Meyer & Arias, in press)
AILC Phase Resulting from this phase, learners:

Empathy • become familiar with a problem that is embedded in a context/storyline
• built personal connections with the context/storyline

Engage
• become familiar with a AI technique, tool, or service that they will need in the AILC
• developed an understanding of the nature of the problem
• identified parameters involved in the problem

Explore I • explored concepts related to the problem
• experienced practices needed in the AILC including collection and analysis data needed in the AILC

Explain
• self-assessed knowledge of concepts and practices
• developed understanding about the skills needed to create a solution to the problem
• improved knowledge about the concepts related to the context/storyline and problem

Explore II
• prototyped (e.g. computer programs, simulated models, investigation of design elements)
• analyzed potential design solutions and justified their designs using their knowledge of concepts and 
skills

Elaboration
• application of evidence from previous AILC phases to a unique design solution
• analysis of design solution performance
• proposed improvements based on performance analyses

Presenter
Presentation Notes
Allison



Cascading teaching-learning model
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Our version 
of AILC

PST’s 
adaptations

Population-
specific Evaluations

Presenter
Presentation Notes
Allison or all.



Google’s Teachable Machines

● https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-
browser-with-tensorflow-js-7dd0bc881cd5

https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
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Example: Finite State Machines 
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Description Time

Students will discover that while Cozmo can sense and act, Cozmo’s brain and thinking 

process can be modified by them using code blocks Calypso. Students are introduced to 

states, transition functions, and state diagrams. Students discuss states and transitions in 

daily life scenarios and are asked to build a state machine diagram for their emotions. 

Students start with a set of identical emotions, then compare their unique state machine 

diagrams with their peers. 

~ 2 hrs

States Obstacle: block in sight
Sound: sound audible

Events Recognize which block
Recognize 

Actions
Move straight
Change direction
Say something

Emotional States

Hurt
Sad
Happy
Neutral

Events

Someone acts mean or bullies
Hears a friend’s empathetic note
Sees a friendly face in hallway
Receives a positive comment
Blames oneself with no grounds
Stays put

Actions
Leaves the negative environment
Responds and reasons
Looks at the bully puzzled & shocked
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